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Synthesis of a 1,5-Naphthoquinone 

Sir: 

We wish to report the synthesis of an unequivocal 1,5-
naphthoquinone, the 3,7-di-fert-butyl-1,5-naphthoquinone 
( l a ) . Of the three possible extended naphthoquinones, 1-3, 

Table I. Calculated15 Electron Affinities (-EA) (eV) of 
Naphthoquinones 

-Naphthoquinone-
1,5- 1,7-1,2- 1,4- 2,6- 2,3-

-EK 2.98 3.09 3.62 3.61 3.75 3.66 

only 2 was known.1 The synthesis of 1 seemed of interest 
with respect to the structure of naphthazarin (1,4- vs. 1,5-
quinoid)2-4 and to recent calculations on quinones.5-6 

Attempts to prepare 1 electrochemically7 or under condi
tions suitable for the preparation of 2 failed,8 indicating the 
higher reactivity of 1. Oxidation experiments of 1,5-dihy-
droxynaphthalene with 2,3-dichloro-5,6-dicyanobenzoqui-
none (DDQ) in dioxane or lead tetraacetate in acetic acid 
carried out in our laboratories yielded brown amorphous 
substances and no compound with the tentative properties 
(uv, reduction) of 1. 

In order to decrease the high reactivity of 1 we intro
duced a shielding group into positions, 3 and 7, namely tert-
butyl. As is known and has recently been shown by the syn
thesis of highly reactive ring systems, e.g., pentalene9 and 
cyclobutadiene,10 tert-bnty\ groups exert a high stabilizing 
effect with only minor changes of the ir-electron system." 

Dehydrogenation of l,5-dihydroxy-3,7-di-te/-f-butylna-
phthalene by DDQ under nitrogen in methylene chloride 
yielded in a nearly quantitative reaction after evaporation 
red crystals of la. The structure follows from the easy re
duction to the conjugate hydroquinone and from spectral 
data: nmr (CDCl3) 1.27 (s, 18 C (CH3 )3), 6.52, 7.67 (2d, 2 
X 2, H 2, 6 and H 4, 8, J « 2 Hz); ir (CCl4) 2970 (CH3). 
1620 ( C = C ) , 1625 ( C = O ) , 1594 cm"1 ( C = C ) ; uvmax 

(CCLt) 475, 462 nm sh; mass spectrum (70 eV) m/e (rel in
tensity) [M + + 2] 272 (3), 257 (4), 201 (1). As in other 
cases12 the mass spectrum of this quinone shows only a very 
small peak at the molecular mass (m/e 270). The existence 
of a molecular ion m/e (found) 270.1614, (calcd for 
C18H22O2 270.1619) could be shown by high resolution 
mass spectrometry,13 tic RF (CHCl3, silica gel) 0.2. Ia is 
stable at room temperature under anhydrous conditions, 
however, with moisture 5-hydroxy-3,7-di-/e/7- butyl-1,4-
naphthoquinone is slowly formed. 

We have already shown for the anthraquinone series14 

that the calculated energy of the LUMO's (electron affini
ties)15 '16 seems to be a good measure for the stability17 of 
quinones. As can be seen from Table I the easily obtainable 
naphthoquinones possess E A values of nearly - 3 eV where
as the values of 1-3 are found to be in the range from -3 .6 
to -3 .75 eV. l,5-Dihydroxy-3,7-di-fe/-?-butylnaphthalene 
(mp 230-232° dec) was prepared by 1,5-dichlorosulfona-
tion19 of 2,6-di-?e/-/-butylnaphthalene (10% yield) followed 
by fusion with KOH (65%). 

Ia possesses an unusually low C = O stretching frequency 
(1625 cm - 1 , CCI4) as compared with 1,4-naphthoquinone 
(1675 cm - 1 , CCI4)20 and other para one-ring quinones 
(1690-1660 cm - 1 ) . This observation can be explained by 
the extended conjugated ir-electron system of la, which cor
relates to the value of another two-ring quinone, 4,4'-di-
phenoquinone (1634 cm - 1 , CCl4),20 and is a strong argu-
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ment against the formulation of naphthazarin in the tauto
meric form 5.2 With regard to the strong hydrogen bond in 
naphthazarin,21 5 should have a strong shift to lower wave 
numbers for the C = O vibration compared with la,2 2 

whereas the observed value for naphthazarin is 1623 cm - 1 

(CCl4). 

o 9 O 

A similar conclusion can be drawn from the shift of the n 
-* ir* transition23 from 1,4-naphthoquinone (Xmax (CHCI3) 
335 nm (e 3040)) to 5-hydroxy-1,4-naphthoquinone (Xmax 
(CHC]3) 429 nm (e 380O)) and to naphthazarin (XmM 

(CHCI3) 524 nm (e 6050)). Assuming a shift of a compara
ble order (90-100 nm/OH) on introducing one hydroxy 
group in the peri position of 1 the absorption of 5 should 
occur at much longer wavelengths than observed for na
phthazarin.24 

Further evidence for the structure of naphthazarin as 
5,8-dihydroxy-1,4-naphthoquinone follows from the calcu
lated standard heats of formation15 for 4 (AHf0 = - 9 9 , 1 
kcal/mol) and 5 (AJVf0 = - 8 5 , 1 kcal/mol). Neglecting en
tropy and solvation effects the value for the equilibrium 
constant K (25°) = [5]/[4] should be K = 4.9 X 1 0 - " . 2 6 

Our results show that former X-ray studies which de
scribe one modification of naphthazarin as 1.5-quinoid3 

permit no conclusions to be made as to the structure of na
phthazarin in solution. 
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a-Tr Interaction. A Cyclopropyl-ir-methane 
Rearrangement. Mechanistic and Exploratory 
Organic Photochemistry1,2 

Sir: 

One of the most general and synthetically useful of pho
tochemical reactions is the di-7r-methane rearrangement.-1 

It was therefore of interest to ascertain if the counterpart 
process in which one x bond is replaced by a three ring will 
occur. 

Presently, (A) we report the photochemistry of 3-(2,2-
diphenylcyclopropyl)-3-methyl-1,1 -diphenyl-1 -butene (1) 
to afford 1,1-diphenylethylene (2), 1,1-diphenylisobutylene 
(3), 1,1-diphenyl-1,3-butadiene (4), l,l-diphenyl-4,4-di-
methyl-l,3-butadiene (5), and 3-(2,2-diphenylvinyl)-2,2-
dimethyl-l,l-diphenylcyclobutane (6). (B) We also note ev
idence that diphenylethylene (2) and diphenyldimethylbu-
tadiene (5) are primary photoproducts, while diphenyliso-
butylene (3) and diphenylbutadiene (4) are secondary. (C) 
We describe the photochemistry of vinylcyclobutane 6 and 
give evidence that it is the reaction intermediate leading to 
diphenylisobutylene (3) and diphenylbutadiene (4). Inter
esting regiospecificity is noted. (D) We provide evidence 
that both steps of the reaction are singlet processes. (E) We 
give results which exclude 3,3-dimethyl-1,1-diphenyl-1-bu-
tenylidene (7) as an intermediate. (F) We present a mecha
nism for formation of the primary products which is pre
cisely parallel to that of the ordinary di-ir-methane rear
rangement. 

Direct irradiation4 of 3-(2,2-diphenylcyclopropyl)-3-
methyl-1,1-diphenyl-1-butene (1) gave five products (2, 3, 
4, 5, and 6) as depicted in eq 1. 

Ph 

(1) 

Ph 
Ph Ph 

1 

Ph Ph 

Ph Ph 

2 3 

Ph 

Ph \ 

5 

Ph 

• > 
Ph 

= \ 
V - T = 

4 

P 

+ 

1 

1 
Ph 

6 

+ 

"Ph 

Journal of the American Chemical Society / 97:2 / January 22, 1975 


